Optimal Execution via Multi-Objective Multi-Armed Bandits (Student Abstract)

نویسندگان

چکیده

When trying to liquidate a large quantity of particular stock, the price that stock is likely be affected by trades, thus leading reduced expected return if we were sell entire at once. This leads problem optimal execution, where aim split order into several smaller orders over course period time, optimally balance with market risk. can defined in terms difference equations. Here, show how reformulate this as multi-objective problem, which solve novel multi-armed bandit algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Objective X -Armed Bandits

Many of the standard optimization algorithms focus on optimizing a single, scalar feedback signal. However, real-life optimization problems often require a simultaneous optimization of more than one objective. In this paper, we propose a multi-objective extension to the standard X -armed bandit problem. As the feedback signal is now vector-valued, the goal of the agent is to sample actions in t...

متن کامل

Thompson Sampling for Multi-Objective Multi-Armed Bandits Problem

The multi-objective multi-armed bandit (MOMAB) problem is a sequential decision process with stochastic rewards. Each arm generates a vector of rewards instead of a single scalar reward. Moreover, these multiple rewards might be conflicting. The MOMAB-problem has a set of Pareto optimal arms and an agent’s goal is not only to find that set but also to play evenly or fairly the arms in that set....

متن کامل

Interactive Thompson Sampling for Multi-objective Multi-armed Bandits

In multi-objective reinforcement learning (MORL), much attention is paid to generating optimal solution sets for unknown utility functions of users, based on the stochastic reward vectors only. In online MORL on the other hand, the agent will often be able to elicit preferences from the user, enabling it to learn about the utility function of its user directly. In this paper, we study online MO...

متن کامل

Almost Optimal Exploration in Multi-Armed Bandits

We study the problem of exploration in stochastic Multi-Armed Bandits. Even in the simplest setting of identifying the best arm, there remains a logarithmic multiplicative gap between the known lower and upper bounds for the number of arm pulls required for the task. This extra logarithmic factor is quite meaningful in nowadays large-scale applications. We present two novel, parameterfree algor...

متن کامل

Multi-armed Bandits: Competing with Optimal Sequences

We consider sequential decision making problem in the adversarial setting, where regret is measured with respect to the optimal sequence of actions and the feedback adheres the bandit setting. It is well-known that obtaining sublinear regret in this setting is impossible in general, which arises the question of when can we do better than linear regret? Previous works show that when the environm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2023

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v37i13.26945